Controls on Highly Siderophile Element Concentrations in Martian Basalt: Sulfide Saturation and Under-saturation

نویسنده

  • K. Righter
چکیده

Introduction: Highly siderophile elements (HSE; Re, Au and the platinum group elements) in shergottites exhibit a wide range from very high, similar to the terrestrial mantle, to very low, similar to sulfide saturated mid ocean ridge basalt (e.g., [1]). This large range has been difficult to explain without good constraints on sulfide saturation or under-saturation [2]. A new model for prediction of sulfide saturation places new constraints on this problem [3]. Shergottite data: For primitive shergottites, pressure and temperature estimates are between 1.2-1.5 GPa, and 1350-1470˚C [4]. The range of oxygen fugacities is from FMQ-2 to IW, where the amount of Fe 2 O 3 is low and thus does not have a significant effect on the S saturation values. Finally, the bulk compositions of shergottites have been reported in many recent studies (e.g., [5]). All of this information will be used to test whether shergottites are sulfide saturated [3]. Modeling values and results: The database for HSE partition coefficients has been growing with many new data for sili-cates and oxides [6-8] to complement a large sulfide database [9-11]. Combining these data with simple batch melting models allows HSE contents of mantle melts to be estimated for sulfide-bearing vs. sulfide-free mantle. Combining such models with fractional crystallization modeling (e.g., [12]) allows HSE contents of more evolved liquids to be modeled. Most primitive shergottites have high HSE contents (and low S contents) that can be explained by sulfide under-saturated melting of the mantle. An exception is Dhofar 019 which has high S contents and very low HSE contents suggesting sulfide saturation. Most evolved basaltic shergottites have lower S contents than saturation , and intermediate HSE contents that can be explained by oli-vine, pyroxene, and chromite fractionation. An exception is EET A79001 lithology B, which has very low HSE contents and S contents higher than sulfide saturation values – evidence for sul-fide saturation during late fractional crystallization. These results show that shergottite HSE contents are controlled by silicates, oxides, and sulfides. In addition, the mantle producing the most primitive shergottites did not contain near chondritic relative ratios of the HSEs like the terrestrial mantle, and did not experience a late chondritic veneer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Siderophile Element Constraints on the Conditions of Core Formation in Mars

Introduction: Siderophile element concentrations in planetary basalts and mantle samples have been used to estimate conditions of core formation for many years and have included applications to Earth, Moon, Mars and asteroid 4 Vesta [1]. For Earth, we have samples of mantle and a diverse collection of mantle melts which have provided a mature understanding of the how to reconstruct the concentr...

متن کامل

Solubility of Sulfur in Shergottitic Silicate Melts up to 0.8 Gpa: Implications for S Contents of Shergottites

Introduction: Shergottites have high S contents (1300 to 4600 ppm; [1]), but it is unclear if they are sulfide saturated or under-saturated. This issue has fundamental implications for determining the long term S budget of the martian surface and atmosphere (from mantle degassing), as well as evolution of the highly siderophile elements (HSE) Au, Pd, Pt, Re, Rh, Ru, Ir, and Os, since concentrat...

متن کامل

Chemical and Isotopic Diversity of Organic Particles in Chondrites: Parent Body vs. Nebular Processes

Introduction: Insoluble organic matter (IOM), the main organic constituent in chondrites, has been extensively studied after HF/HCl isolation techniques. Bulk isotopic compositions and elemental ratios show variations between chondrite groups, whereas they are quite homogeneous within each class [1]. Recent isotopic measurements by ion probes have revealed that IOM is heterogeneous at the sub-m...

متن کامل

Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: Constraints on core formation in the Earth and Mars

Abst rac t -This study investigates the effects of variations in the fugacities of oxygen and sulfur on the partitioning of first series transition metals (V, Cr, Mn, Fe, Co, Ni, and Cu) and W among coexisting sulfide melt, silicate melt, and olivine. Experiments were performed at 1 atm pressure, 1350°C, with the fugacities of oxygen and sulfur controlled by mixing CO2, CO, and SO2 gases. Start...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009